Exponential Random Graph (ERG or p^*) Models

COMM 645: Communication Networks
Annenberg School of Communication
University of Southern California
Why do we use stochastic network models?

According to the intro article assigned for this week (Lusher et al, 2007):

- To capture complex social phenomena that are the result of both regularities/interdependencies and “randomness”
- Make inferences as to whether certain network signatures will appear more often than we would expect by chance alone
- Distinguish between different social processes that may have similar results (e.g. is clustering due to homophily or structural balance?)
- Deterministic approaches are not always useful/parsimonious enough in the context of complex network data (e.g. network evolution over time)
- Better understanding of the way local social processes interact and combine to shape global network patterns.
Basics of the approach

- Assume we have an observed network of size n.

- What are the mechanisms driving the formation of our network (e.g. reciprocity, transitivity)?

- Given those mechanisms, are some network configurations (e.g. mutual dyads, transitive triplets) more common than you would expect by chance?

- Include a parameter for each configuration in the model. Parameter values will help us identify a probability distribution for all graphs of size n. (e.g. if we have a high value for the reciprocity parameter, graphs that have a lot of mutual dyads will be more probable than ones that do not)

- Estimate the parameters: find the parameter values that best match the observed network. We do that using MCMC-MLE: Markov Chain Monte Carlo Maximum Likelihood Estimation techniques.

- Once we have our probability distribution, we can draw random graphs from it and compare any of their characteristics to those of our observed network.
Exponential Random Graph Models

A class of stochastic models that share the following general form:

$$\Pr(Y = y) = \left(\frac{1}{k}\right) \exp\left\{ \sum_A \eta_A g_A(y) \right\}$$

Where:
- Y is a network realization
- y is the observed network
- The summation is over all configurations A
- η_A is the parameter corresponding to configuration A
- $g_A(y)$ is the network statistic corresponding to configuration A
- k is a normalizing factor calculated by summing up
 $$\exp\left\{ \sum_A \eta_A g_A(y) \right\}$$
 over all possible network configurations
Simple Examples

Note: Homogeneity assumption!

- Edge only (Bernoulli random graph distributions):
 \[
 \Pr(Y = y) = \left(\frac{1}{k}\right) \exp\left\{ \sum_{i,j} \eta_{ij} y_{ij} \right\} = \left(\frac{1}{k}\right) \exp\left\{ \theta \sum_{i,j} y_{ij} \right\}
 \]

- Edge and reciprocity:
 \[
 \Pr(Y = y) = \left(\frac{1}{k}\right) \exp\left\{ \theta \sum_{i,j} y_{ij} + \rho \sum_{i,j} y_{ij} y_{ji} \right\}
 \]

Where \(\theta \) is the density parameter and \(\rho \) is the reciprocity parameter.
Note that the two models are identical for symmetric networks.
Pr\((y_{ij} = 1 | Y^{(ij)}) = \frac{Pr(Y^+)}{Pr(Y^+) + Pr(Y^-)} \)

Conditional log odds of a tie:

\[
\text{logit} \left[\Pr(y_{ij} = 1 | Y^{(ij)}) \right] = \theta_1 \delta_1(y^{(ij)}) + \theta_2 \delta_2(y^{(ij)}) + \cdots + \theta_k \delta_k(y^{(ij)})
\]

Where \(\theta \) is the coefficient and \(\delta \) is a change statistic.
Network Configurations: Undirected Networks

<table>
<thead>
<tr>
<th></th>
<th>4-Star</th>
<th>2-Star</th>
<th>K-Star</th>
<th>Triangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Star</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Star</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example:
- Edge: 6
- 2-Star: $1+3+1+6+0=11$
- 3-Star: $0+1+0+4+0=5$
- 4-Star: 1
- Triangle: 2
Network Configurations: Directed Networks

<table>
<thead>
<tr>
<th>Arc</th>
<th>Reciprocity</th>
<th>Isolate</th>
<th>2-mixed-star</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2-in-star</th>
<th>2-out-star</th>
<th>K-in-star</th>
<th>K-out-star</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transitive triad</th>
<th>Cyclic triad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are a number of tools that will allow you to estimate exponential random graph models. Two of the most commonly used ones are:

- **ERGM package in R**
 Maintained by David R. Hunter, Penn State University
 For more information visit: Statnet.org

- **PNet software family**
 Maintained by the MelNet center, Melbourne, Australia
 For more information visit: [PNet by MelNet](http://PNet.by.MelNet)